

LinkedIn

Aplikacja SolarGo Aplikacja SEMS Portal

Oficjalna strona internetowa

GOODWE (Chiny)

GOODWE (Brazylia)

T: +55 81 991239286 sergio@goodwe.com servico.br@goodwe.com

GOODWE (UK)

Rua Abelardo 45, Recife/PE, 52050-310

No. 90 Zijin Rd., New District, Suzhou, 215011, Chiny T: +86 (0) 512 6958 2201 sales@goodwe.com (sprzedaż) service@goodwe.com (serwis)

GOODWE (Niemcy)

Fürstenrieder Str. 279a 81377 München, Germany T: +49 8974120210 +49 421 83570-170 (serwis) sales.de@goodwe.com service.de@goodwe.com

GOODWE (Holandia)

Franciscusdreef 42C, 3565AC Utrecht, Holand T: +31 (0) 30 737 1140 sales@goodwe.com service.nl@goodwe.com

GOODWE (Indie)

1202, G-Square Business Park, Sector 30A, Opp. Sanpada Railway Stn., Vashi, Navi Mumbai- 400703 T: +91 (0) 2249746788 sales@goodwe.com / service.in@goodwe.com

GOODWE (Turkey)

Adalet Mah. Megapol Tower K: 9 No: 110 Bayraklı - Izmir T: +90 (232) 935 68 18 info@goodwe.com.tr service@goodwe.com.tr

GOODWE (Meksyk)

Oswaldo Sanchez Norte 3615, Col. Hidalgo, Monterrey Nuevo Leon, Mexico, C.P. 64290 T: +5218128712871 sales@noodwe.com / sonorte latam@noodwe.com

operazioni@topsenergy.com; goodwe@arsimp.it (serwis)

T: +39 338 879 38 81; +39 831 162 35 52 valter.pische@goodwe.com (sprzedaż)

GOODWE (Australia)

GOODWE (Wiochy)

Level 14, 380 St. Kilda Road, Melbourne, Victoria, 3004, Australia T: +61 (0) 3 9918 3905 sales@goodwe.com / service.au@goodwe.com

enquiries@goodwe.com.uk / service@goodwe.com.uk

GOODWE (Korea)

8F Invest Korea Plaza, 7 Heoleung-ro Seocho-gu Seoul Korea (06792) T: 82 (2) 3497 1066 sales@goodwe.com / Larry.Kim@goodwe.com

INSTRUKCJA OBSŁUGI SERII SDT G2

FALOWNIK SOLARNY SERII SDT G2

Uwaga: Powyższe dane kontaktowe mogą ulec zmianie bez wcześniejszego powiadomienia. Szczegółowe informacje można znaleźć na stronie www.goodwe.com

1 Symbole	
2 Środki bezpieczeństwa i ostrzeżenia	
3 Informacje ogólne o produkcie	
3.1 Widok falownika	
3.2 Opakowanie	
4 Instalacja	
4.1 Instrukcja montażu	
4.2 Montaż urządzenia	
4.3 Połączenia elektryczne	
4.4 Połączenia komunikacyjne	
5 Praca systemu	
5.1 Panel LCD i LED	
5.2 Interfejs użytkownika i konfiguracja systemu	22
5.3 Miękki i twardy reset Wi-Fi	
5.4 Komunikaty o błędach	
5.5 Środki ostrożności podczas pierwszego uruchomienia	
5.6 Ustawienie funkcji specjalnych	27
6 Rozwiązywanie problemów	
7 Parametry techniczne	30

1 Symbole

\triangle	Nieprzestrzeganie ostrzeżeń zawartych w niniejszej instrukcji może spowodować obrażenia ciała.
	Materiały przeznaczone do recyklingu
Â	Niebezpieczeństwo ze strony wysokiego napięcia i ryzyko porażenia prądem
$\boxed{\uparrow\uparrow}$	Tą stroną do góry – opakowanie musi być skierowane strzałką do góry
	Nie dotykać, gorąca powierzchnia!
6	Układać jedno na drugim maksymalnie sześć (6) identycznych opakowań.
	Specjalne instrukcje dotyczące utylizacji
Ţ	Delikatny element
	Przechowywać w suchym miejscu
i	Patrz instrukcja obsługi
5 min.	Elementów wewnętrznych można dotykać dopiero po 5 minutach od momentu odłączenia falownika
CE	Znak CE.

\Lambda 2. Środki bezpieczeństwa i ostrzeżenia

Niniejsza instrukcja obsługi zawiera ważne zalecenia dotyczące falownika serii SDT G2, których należy przestrzegać podczas instalacji urządzenia.

Falownik serii SDT G2 firmy Jiangsu GOODWE Power Technology Co, Ltd. (dalej: GOODWE) jest zgodny z przepisami bezpieczeństwa w zakresie konstrukcji i działania. Podczas instalacji, rozruchu, eksploatacji i konserwacji należy przestrzegać przepisów bezpieczeństwa obowiązujących w danym kraju. Nieprawidłowa obsługa może stanowić ryzyko porażenia prądem, uszkodzenia sprzętu lub poniesienia strat materialnych. (SDT G2: podwójny MPPT, trójfazowy). Nieprawidłowa obsługa może:

1. Stanowić zagrożenie dla życia i zdrowia operatora oraz osób trzecich.

2. Doprowadzić do uszkodzenia falownika lub innych urządzeń należących do operatora lub osób trzecich.

Dlatego przed przystąpieniem do wszelkich prac przy urządzeniu należy zapoznać się z poniższymi instrukcjami bezpieczeństwa i zawsze ich przestrzegać. Wszystkie szczegółowe ostrzeżenia i uwagi dotyczące bezpieczeństwa pracy zostaną zamieszczone przy odpowiednich punktach w kolejnych rozdziałach. Wszelkie prace instalacyjne i elektryczne mogą być wykonywane wyłącznie przez wykwalifikowanych pracowników. Pracownicy ci muszą spełnić następujące warunki:

Odbyć specjalistyczne szkolenie

• Dokładnie zapoznać się z całą dokumentacją techniczną dotycząca produktu

Posiadać wiedzę w zakresie wymagań bezpieczeństwa instalacji elektrycznych.

Prace związane z instalacją, konserwacją i podłączeniem falownika muszą być wykonywane przez wykwalifikowanych pracowników, zgodnie z lokalnie obowiązującymi normami elektrycznymi, przepisami i wymogami lokalnych zakładów energetycznych i organów regulacyjnych.

Niewłaściwa obsługa urządzenia stwarza ryzyko obrażeń.

- Podczas przenoszenia lub ustawiania falownika należy zawsze postępować zgodnie z instrukcjami zawartymi w Instrukcji obsługi.
- W przypadku nieostrożnego obchodzenia się z urządzeniem jego ciężar może spowodować poważne obrażenia ciała, rany bądź stłuczenia.
- Urządzenie należy zainstalować w miejscu niedostępnym dla dzieci.
- Przed rozpoczęciem instalacji i konserwacji falownika, należy bezwzględnie upewnić się, że falownik został odłączony od
 wszelkich źródeł energii elektrycznej.
- Przed rozpoczęciem konserwacji należy w pierwszej kolejności odłączyć falownik od sieci AC. Następnie należy odłączyć go od strony DC i odczekać co najmniej 5 minut w celu uniknięcia ryzyka porażenia prądem.
- Wszystkie przewody muszą być dobrze przymocowane, nieuszkodzone, odpowiednio zaizolowane i dobrane pod względem wielkości.
- Podczas działania temperatura niektórych elementów falownika może przekroczyć 60°C. Aby uniknąć ryzyka poparzenia, nie należy dotykać falownika podczas pracy. Przed dotknięciem falownika należy odczekać, aż ostygnie.
- Nie wolno bez wcześniejszego zezwolenia otwierać przedniej pokrywy falownika. Użytkownik nie powinien dotykać ani wymieniać żadnych elementów falownika, za wyjątkiem złączek DC i AC. Producent nie ponosi żadnej odpowiedzialności za jakiekolwiek uszkodzenia falownika lub obrażenia operatora spowodowane niewłaściwą obsługą.

- Uziemienie instalacji fotowoltaicznej nie jest domyślnie skonfigurowane.
- Elementy elektroniczne falownika mogą ulec uszkodzeniu na skutek obecności ładunków elektrostatycznych. Należy zastosować odpowiednie środki zaradcze, aby zapobiegać takim uszkodzeniom. W przeciwnym wypadku falownik może ulec uszkodzeniu, co skutkuje unieważnieniem gwarancji.
- Należy upewnić się, że napięcie wyjściowe w instalacji fotowoltaicznej jest niższe niż maksymalne znamionowe napięcie wejściowe falownika. W przeciwnym wypadku falownik może ulec uszkodzeniu, co skutkuje unieważnieniem gwarancji.
- W przypadku używania urządzenia dla celów niezgodnych z przeznaczeniem określonym przez producenta, elementy zabezpieczające urządzenie mogą nie działać prawidłowo.
- Wystawiona na działanie promieni słonecznych instalacja fotowoltaiczna wytwarza bardzo wysokie napięcie, które może stanowić zagrożenie porażenia prądem. Należy ściśle przestrzegać dostarczonej instrukcji obsługi.
- Zgodnie z normą IEC61730, moduły fotowoltaiczne powinny posiadać klasę bezpieczeństwa A.
- Podczas pracy falownika nie należy wkładać lub wyjmować przewodów ze złączy AC i DC.
 W przeciwnym razie falownik ulegnie uszkodzeniu.

Dozwolone jest wyłącznie stosowanie złączek DC dostarczonych przez producenta. W przeciwnym wypadku falownik może ulec uszkodzeniu, co skutkuje unieważnieniem gwarancji.

- W systemie, gdzie oprócz wbudowanego modułu monitorowania prądu różnicowego (RCMU) wymagany
 jest zewnętrzny wyłącznik różnicowoprądowy (RCD), falownik nie dopuszcza do powstania prądów
 różnicowych o natężeniu do 6 mA. Aby wykluczyć możliwość samoczynnego wyłączenia, należy użyć
 wyłącznika RCD typu A. (Zaleca się, aby prąd różnicowy wyłącznika różnicowoprądowego (RCD) wynosił
 poniżej 30 mA.)
- · Moduł fotowoltaiczny nie jest domyślnie uziemiony.
- Jeżeli instalacja fotowoltaiczna obejmuje więcej niż 3 stringi PV po stronie wejścia, zaleca się instalację dodatkowego bezpiecznika.

Poziom ochrony IP65 zakłada całkowite uszczelnienie urządzenia. Zaleca się instalację falownika najpóźniej jeden dzień po jego rozpakowaniu. Jeżeli jest to niemożliwe, należy zamknąć niepodłączone porty i wejścia, aby zabezpieczyć wnętrze urządzenia przed wnikaniem wody lub pyłu.

Firma GOODWE zapewnia standardową gwarancję producenta na falowniki, dostarczaną do klienta wraz z produktem, a także daje możliwość odpłatnego przedłużenia standardowej gwarancji. Szczegółowe informacje na temat warunków gwarancji i możliwych rozwiązań znajdują się w poniższym linku.

https://en.goodwe.com/warranty.asp

3 Informacje ogólne o produkcie

3.1 Widok falownika

Pozycja	Nazwa	Opis	
1	Wejście PV	Do podłączenia stringu PV	
2	Odłącznik DC (opcja)	Podczas normalnej pracy wyłącznik jest w pozycji "ON", może doprowadzić do zamknięcia falownika po jego odłączeniu od sieci elektroenergetycznej za pomocą wyłącznika AC.	
3	Port USB (opcja)	Funkcja ta wykorzystywana jest jedynie do aktualizacji lokalnego oprogramowania sprzętowego i kalibracji parametrów przez pracowników obsługi posprzedażowej.	
4	Wodoodporny odpowietrznik	Wodoodporny zawór przepuszczający powietrze	
5	Moduł Com	Do komunikacji poprzez Wi-Fi / LAN	
6	Inteligentny miernik / RS485	Do podłączenia inteligentnego miernika lub RS485	
7	Urządzenie DRED / zdalne wyłączanie	Do komunikacji z urządzeniem DRED lub podłączenia urządzenia do zdalnego wyłączania	
8	Wyjście AC	Do podłączenia przewodu AC	
9	Wentylatory	System wyposażony jest w dwa wentylatory służące do chłodzenia za pomocą wymuszonego, sterowanego obiegu powietrza.	
10	Lampka kontrolna	Informuje o stanie falownika	
11	Wyświetlacz LCD	Wyświetlanie i ustawianie parametrów roboczych falownika.	
12	Przyciski	Do ustawiania i przeglądania parametrów.	

3.2 Opakowanie

[1] Wtyczka DC z biegunem dodatnim i ujemnym:

modele GW4K-DT / GW4KL-DT / GW5K-DT / GW6K-DT / GW6KL-DT / GW8K-DT / GW10KT-DT – 2 pary.

modele GW12KT-DT / GW15KT-DT – 3 pary.

modele GW17KT-DT / GW20KT-DT – 4 pary.

model GW25KT-DT – 5 par.

[2] Do podłączenia AC modeli GW4K-DT / GW4KL-DT / GW5K-DT / GW6K-DT / GW6KL-DT / GW8K-DT / GW10KT-DT / GW12KT-DT / GW15KT-DT potrzebna jest złączka AC.

[3] Do podłączenia AC modeli GW17KT-DT / GW20KT-DT / GW25KT-DT potrzebna jest puszka przyłączeniowa AC.

4 Instalacja

4.1 Instrukcja montażu

- 1. Urządzenie pracuje optymalnie w temperaturze otoczenia nieprzekraczającej 45°C .
- 2. Zalecamy instalację falownika na wysokości oczu, aby ułatwić jego obsługę i konserwację.
- 3. Falownika nie należy instalować w pobliżu przedmiotów łatwopalnych lub posiadających właściwości wybuchowe. Miejsce instalacji nie powinno znajdować się w pobliżu silnego pola elektromagnetycznego.
- 4. Aby zapewnić odpowiednią moc sygnału, miejsce instalacji nie powinno znajdować się w pobliżu silnego pola elektromagnetycznego i tym podobnych zakłóceń.
- 5. Tabliczka znamionowa i symbole ostrzegawcze powinny znajdować się w miejscu dobrze widocznym dla użytkownika.
- 6. Falownik należy koniecznie zainstalować w miejscu chronionym przed bezpośrednim działaniem promieni słonecznych, deszczu i śniegu.

4.2 Montaż urządzenia

4.2.1 Wybór miejsca instalacji

- 1. Podczas montażu na ścianie należy uwzględnić nośność ściany. Ściana (np. betonowa lub metalowa) powinna wykazywać wystarczającą wytrzymałość, aby utrzymać ciężar falownika przez dłuższy czas.
- 2. Zainstalować urządzenie w miejscu umożliwiającym łatwą obsługę i wykonanie podłączeń elektrycznych.
- 3. Nie należy instalować urządzenia na ścianie wykonanej z łatwopalnego materiału.
- 4. Należy upewnić się, że miejsce instalacji jest dobrze wentylowane.
- 5. Falownika nie należy instalować w pobliżu przedmiotów łatwopalnych lub posiadających właściwości wybuchowe. Miejsce instalacji nie powinno znajdować się w pobliżu sprzętu generującego silne pole elektromagnetyczne.
- 6. Zainstalować urządzenie na wysokości oczu, aby zapewnić wygodną obsługę i konserwację.
- 7. Zainstalować urządzenie w pionie lub z lekkim pochyleniem do tyłu o maks. 15 stopni. Przechył na boki jest niedozwolony. Porty i przyłącza powinny być skierowane w dół. W przypadku montażu w poziomie, minimalna odległość od gruntu powinna wynosić 250 mm.

W celu ułatwienia odprowadzenia ciepła i późniejszego demontażu, wokół falownika powinna znajdować się wolna przestrzeń z zachowaniem odległości pokazanych na ilustracji poniżej: Miejsce montażu nie powinno przeszkadzać w dostępie do odłączników.

4.2.2 Procedura montażu

- 1. Użyć uchwytu do montażu ściennego jako szablonu i wywiercić otwory w ścianie: 10 mm średnicy i 80 mm głębokości.
- 2. Przymocować uchwyt do ściany za pomocą kołków rozporowych znajdujących się w zestawie.
- 3. Przytrzymać falownik za boczne wgłębienie.
- 4. Zamontować falownik na uchwycie do montażu ściennego.

Sposób montażu falownika SDT G2 4 – 15 kW:

Sposób montażu falownika SDT G2 17 – 25 kW:

4.3 Połączenia elektryczne

4.3.1 Podłączenie do sieci zewnętrznej (po stronie AC)

- 1. Zmierzyć napięcie i częstotliwość sieci w punkcie dostępowym połączonym z siecią zewnętrzną i upewnić się, czy są one zgodne ze specyfikacją falownika współpracującego z siecią.
- 2. Po stronie AC zaleca się zamontować wyłącznik lub bezpiecznik o zakresie co najmniej 1,25 wartości znamionowego prądu przemiennego na wyjściu.
- Przewód PE falownika należy podłączyć do uziemienia. Upewnić się, że impedancja pomiędzy przewodem neutralnym a przewodem uziemiającym jest mniejsza niż 10 Ω.
- 4. Odłączyć wyłącznik lub bezpiecznik znajdujący się pomiędzy falownikiem a siecią.

- 5. Podłączyć falownik do sieci w następujący sposób: Sposób instalacji przewodów na wyjściu AC przedstawiono poniżej.
- 6. Instalacji przewodów AC należy dokonać w taki sposób, aby w razie zsunięcia się przewodu z uchwytu i naprężenia się przewodów, przewód uziemiający był ostatnim, który przejmie obciążenie, dlatego przewód PE powinien być dłuższy niż przewód L i N.

Podłączenie SDT G2 4 – 15 kW:

Z falownikiem współpracuje tylko jeden typ złączek AC: seria VACONN.

Instrukcja instalacji serii VACONN

Specyfikacja przewodów po stronie AC.

* Przewód neutralny powinien być w kolorze niebieskim; przewód prądowy (najlepiej) w kolorze czarnym lub brązowym, a przewód uziemiający w kolorze żółto-zielonym.

* Przykręcić złącze przewodu AC do właściwego wejścia (moment dokręcający: 0,6 Nm)

Podłączenie SDT G2 17 – 25 kW:

Jeśli wiązka zastosowanych przewodów jest zbyt mała, proszę użyć dołączonej ognioodpornej masy uszczelniającej i zablokować otwór celem zapewnienia wodoodporności złącza AC.

Krok 1: Po kolei przeprowadzić przewody AC przez puszkę przyłączeniową AC.

Krok 2: Zacisnąćzłączki 5 przewodów, aby upewnić się, że powłoka przewodu nie dostanie się do gniazda wtykowego.

Krok 3: Połączyć przewód AC ze złączem AC, następnie przykręcić śruby (moment dokręcenia 2,3 Nm) celem

zapewnienia prawidłowego połączenia. Następnie zamknąć puszkę przyłączeniową AC i dokręcić śruby.

		Wiązka żył drutu	Oznaczenie	Opis	Wartość
		miedzianego	A	Średnica zewn.	17 – 20 kW: 18 – 25 mm
		В			25 kW: 22 – 32 mm
	A L	¥ _		Pole przekroju przewodnika	17 kW: 6 – 16 mm ²
////	•		В		20 kW: 10 – 16 mm ²
					25 kW: 10 – 25 mm²
		С	Długość przewodu zaizolowanego	ok. 45 mm	
		CD	D	Długość przewodu odizolowanego	ok. 12 mm

4.3.2 Wyłącznik AC i urządzenie zabezpieczające przed prądem upływowym

W celu umożliwienia bezpiecznego i niezawodnego odłączenia falownika od sieci elektroenergetycznej, i tym samym jego ochrony, należy zainstalować niezależny wyłącznik dwubiegunowy.

Model falownika	Specyfikacja zalecanego wyłącznika
GW4K-DT / GW5K-DT / GW6K-DT	16 A
GW8K-DT / GW8KAU-DT / GW10KT-DT / GW10KAU-DT	25 A
GW12KT-DT / GW12KAU-DT / GW15KT-DT / GW15KAU-DT / GW17KT-DT / GW17KAU-DT	32 A
GW20KT-DT / GW20KAU-DT	40 A
GW25KT-DT	50 A

Uwaga: Kilka falowników nie może korzystać z tego samego wyłącznika.

Zintegrowane z falownikiem urządzenie do wykrywania prądu upływowego może wykrywać obecność prądu upływowego w czasie rzeczywistym. Kiedy wykryty prąd upływowy przekroczy ustaloną wartość graniczną, falownik natychmiast odłączy się od sieci. Jeżeli zainstalowane jest zewnętrzne zabezpieczenie przed prądem upływowym, prąd różnicowy jego zadziałania powinien wynosić 300 mA lub więcej.

4.3.3 Połączenie z instalacją DC

- 1. Przed podłączeniem stringów PV należy sprawdzić polaryzację złączy wtykowych. Nieprawidłowa polaryzacja może spowodować trwałe uszkodzenie urządzenia.
- 2. Napięcie w stringach PV nie może przekraczać maksymalnego napięcia na wejściu do falownika.
- 3. Dozwolone jest wyłącznie stosowanie złączek DC dostarczonych przez producenta.
- 4. Nie wolno podłączać biegunów dodatnich ani ujemnych do przewodu PE (przewodu uziemiającego). W przeciwnym razie może nastąpić uszkodzenie urządzenia.
- 5. Nie należy podłączać ani dodatniego, ani ujemnego bieguna stringu PV do przewodu uziemiającego. W przeciwnym razie może dojść do uszkodzenia falownika.
- 6. Czerwony przewód to biegun dodatni, a czarny przewód to biegun ujemny.
- 7. W odniesieniu do urządzeń serii SDT G2, minimalna rezystancja izolacji uziemienia paneli fotowoltaicznych powinna wynosić 33,4 kΩ (R = 1000/30 mA). W przypadku braku spełnienia wymogu minimalnej rezystancji istnieje ryzyko porażenia prądem.

Dostępne są cztery rodzaje złączek DC: DEVALAN, SUNCLIX/MC4, AMPHENOL H4 i QC4.10.

Specyfikacja przewodu DC.

Sposób montażu złączki DC.

4.3.3 Uziemienie

Zgodnie z wymaganiami normy EN 50178, falownik wyposażony został w zacisk uziemiający.

Wszystkie odsłonięte, nieprzenoszące prądu metalowe części urządzenia oraz inne osłony w instalacji fotowoltaicznej muszą być uziemione.

W celu podłączenia przewodu PE do uziemienia należy wykonać następujące czynności.

Krok 1

Za pomocą narzędzia do zdejmowania izolacji, z przewodu uziemiającego usunąć izolację na odpowiednim odcinku.

Krok 2

Włożyć odizolowany przewód do złącza i zacisnąć go mocno za pomocą szczypiec.

Krok 3

Zamocować przewód uziemiający w urządzeniu.

Po zakończeniu montażu przewodu uziemiającego, w celu lepszego zabezpieczenia zacisku uziemiającego przed korozją zaleca się nałożenie na niego żelu krzemionkowego.

4.4 Połączenia komunikacyjne

4.4.1 Komunikacja Wi-Fi

Komunikacja Wi-Fi możliwa jest wyłącznie z falownikami wyposażonymi w moduł Wi-Fi. Szczegółowe instrukcje dotyczące konfiguracji znajdują się w "Instrukcji konfiguracji Wi-Fi" wchodzącej w skład zestawu. Po przeprowadzeniu konfiguracji należy odwiedzić stronę http://www.goodwe-power.com w celu stworzenia stacji PV. Poniżej przedstawiono sposób instalacji modułu Wi-Fi w falowniku serii SDT G2.

4.4.2 Połączenie komunikacyjne z USB

Funkcja ta wykorzystywana jest jedynie do aktualizacji lokalnego oprogramowania sprzętowego i kalibracji parametrów przez pracowników obsługi posprzedażowej.

4.4.3 Schemat połączenia ogranicznika mocy wyprowadzanej

Poniżej przedstawiono sposób podłączenia ogranicznika mocy.

4.4.3 Połączenie urządzenia DRED / zdalnego wyłączania / inteligentnego miernika (ogranicznika mocy) w standardzie RS485

Urządzenie opóźniające DRED (ang. Demand Response Enabling Device) przeznaczone jest wyłącznie do stosowania w instalacjach w Australii i Nowej Zelandii, zgodnie z wymogami bezpieczeństwa obowiązującymi w tych krajach. Urządzenie DRED nie jest dostarczane przez producenta falownika w standardzie, mimo że falownik wyposażony jest w odpowiedni port przyłączeniowy.

Funkcja zdalnego wyłączania wymagana jest w niektórych krajach, jak np. Niemcy i Indie, zgodnie z europejskimi przepisami bezpieczeństwa. Urządzenie DRED nie jest dostarczane przez producenta falownika w standardzie, mimo że falownik wyposażony jest w odpowiedni port przyłączeniowy.

Urządzenie DRED należy podłączyć do portu COM za pomocą 6-stykowego złącza, a urządzenie do zdalnego wyłączania podłączyć do portu COM za pomocą 2-stykowego złącza, tak jak pokazano na ilustracji poniżej.

Aby dokonać podłączenia, proszę wykonać następujące czynności.

Zdemontować złącze. Uwaga: Złącze 2-stykowe wchodzi w skład zestawu. Złącze 6-stykowe Pierścień uszczelniający z jednym otworem Zakrętka gwintowana Lolator Złącze 2-stykowe Pierścień uszczelniający z jednym otworem Pierścień uszczelniający z jednym otworem

Krok 3:

Zdemontować rezystor lub przewód zwarciowy. Uwaga: Rysunek przedstawia złącze 6-stykowe. Rezystor

Krok 4:

Przełożyć przewód przez płytkę.

W zależności od funkcji należy zastosować inny przewód i sposób łączenia. Należy przestrzegać sposobu postępowania przewidzianego dla danej funkcji.

Podłączenie urządzenia DRED

Podłączyć przewody w kolejności przedstawionej w tabeli po prawej stronie.

Podłączenie zdalnego wyłączania

Podłączyć przewody w kolejności przedstawionej w tabeli po prawej stronie.

Podłączenie RS485 oraz inteligentnego miernika

Podłączyć przewody w kolejności przedstawionej w tabeli po prawej stronie.

RS485

Krok 5:

Podłączyć złącze do właściwego miejsca w falowniku.

Uwaga:

- 1. Miernik nie stanowi standardowego akcesorium falownika współpracującego z siecią zewnętrzną. W razie potrzeby zainstalowania miernika można skontaktować się z działem sprzedaży.
- 2. Polecenia kompatybilne z DRM to DRM0, DRM5, DRM6, DRM7 i DRM8.
- 3. W przypadku potrzeby zainstalowania miernika można zapoznać się ze wskazówkami zawartymi w Instrukcji obsługi inteligentnego miernika.
- 4. Opcjonalne urządzenie DRED jest dostępne wyłącznie w Australii i Nowej Zelandii.
- 5. Wdrożenie ograniczeń wyprowadzania energii elektrycznej wymaga zainstalowania miernika w instalacji. Aktywacja funkcji oraz ustawienie wartości progowych odbywa się na miejscu za pomocą wyświetlacza LCD lub poprzez aplikację SolarGo, zgodnie ze sposobem postępowania przedstawionym w punkcie "5.2 Interfejs użytkownika i obsługa systemu".

4.4.4 Alarm ziemnozwarciowy

Zgodnie z przepisami zawartymi w rozdziale 13.9 normy IEC62109-2, falownik serii SDT G2 wyposażony jest w alarm ziemnozwarciowy. W przypadku wystąpienia zwarcia doziemnego na przednim ekranie LED zapali się wskaźnik błędu. W przypadku falowników z komunikacją Wi-Fi, system wysyła do klienta wiadomość e-mailową z powiadomieniem o wystąpieniu błędu. W przypadku falowników bez modułu Wi-Fi, przez jedną minutę dzwonić będzie brzęczyk falownika, a następnie zadzwoni ponownie za pół godziny, aż do usunięcia błędu. (Funkcja ta jest dostępna wyłącznie w Australii i Nowej Zelandii).

4.4.5 Portal SEMS

Aplikacia SEMS Porta

Portal SEMS to internetowy system monitorowania pracy systemu. W celu uzyskania możliwości monitorowania pracy urządzenia i instalacji fotowoltaicznej, po wykonaniu połączeń komunikacyjnych można odwiedzić stronę <u>www.semsportal.com</u> lub pobrać aplikację poprzez zeskanowanie kodu QR lub zeskanować kod QR i pobrać aplikację.

Aby uzyskać więcej informacji na temat portalu SEMS, proszę skontaktować się z działem obsługi klienta.

5. Praca systemu

5.1 Panel LCD i LED

Interfejsem użytkownika jest znajdujący się w przedniej części falownika panel LCD obejmujący wskaźniki LED, przyciski i wyświetlacz. Dioda LED służy do wskazywania, że falownik znajduje się w trybie pracy. Przyciski i wyświetlacz LCD służą do konfigurowania i przeglądania parametrów.

W przypadku falowników z ekranem LCD, światła w kolorze żółtym / zielonym / czerwonym odnoszą się odpowiednio do 🔱 / 🕥 / 🏠

Wskaźnik	Stan	Objaśnienie		
		WŁ. = Wi-Fi podłączone / aktywne		
		MIGANIE 1 = Resetowanie Wi-Fi		
Ċ		MIGANIE 2 = Brak połączenia z routerem		
Power		MIGANIE 3 = Problem serwera Wi-Fi		
		MIGANIE = RS485 podłączony		
		WYŁ. = Wi-Fi nieaktywne		
		WŁ. = Falownik wyprowadza energię		
Run		WYŁ. = Falownik nie wyprowadza energii		
\wedge		WŁ. = Wystąpił błąd		
Fault		WYŁ. = Brak błędu		

W przypadku falowników bez ekranu LCD, światła w kolorze zielonym/ zielonym/ zielonym/ czerwonym odnosza sie odpowiednio do: $\cup / \odot / \odot / \triangle$

Wskaźnik	Stan	Objaśnienie	
(')		WŁ. = Urządzenie włączone	
Power		WYŁ. = Urządzenie wyłączone	
		WŁ. = Falownik dostarcza energię	
Run		WYŁ. = Falownik nie dostarcza energii	

Wskaźnik	Stan	Objaśnienie	
		RZADKIE MIGANIE = samokontrola przed podłączeniem się do sieci	
Run		CZĘSTE MIGANIE = łączenie z siecią	
		WŁ. = Wi-Fi podłączone / aktywne	
		MIGANIE 1 = Resetowanie sieci bezprzewodowej	
		MIGANIE 2 = Problem z routerem sieci bezprzewodowej	
SEIVIS		MIGANIE 4 = Problem z serwerem sieci bezprzewodowej	
		WYŁ. = Sieć bezprzewodowa nieaktywna	
		WŁ. = Wystąpił błąd	
Fault		WYŁ. = Brak błędu	

Aplikacia SolarGo

UWAGA:

Jeżeli falownik nie posiada wyświetlacza LCD, można sterować systemem za pomocą aplikacji SolarGo pobranej ze sklepu Google Play lub Apple Store. W celu pobrania aplikacji można również zeskanować kod QR.

5.2 Interfejs użytkownika i konfiguracja systemu

5.2.1 Zasada działania

Przycisk ma dwa tryby działania: Krótkie naciśniecie lub naciśniecie i przytrzymanie przycisku.

W odniesieniu do wszystkich poziomów menu w razie niepodjecia żadnej czynności, nastąpi wyłączenie podświetlenia wyświetlacza LCD i automatyczny powrót do głównego menu. Jednocześnie wszelkie wprowadzone dotad zmiany zostaną zapisane w pamięci wewnętrznej.

5.2.2 Wybór kraju ustawień

Jeżeli na wyświetlaczu LCD pojawia się komunikat "GW6K-DT Pac=6000.0W", należy dłużej przytrzymać przycisk, aby przejść do podmenu. Nacisnąć krótko przycisk, aby dokonać przeglądu dostępnych krajów. Po dokonaniu wyboru kraju ustawień należy chwilę odczekać. Wyświetlacz pokaże "setting..." a następnie albo potwierdzi powodzenie zmiany ustawień wyświetlając "Set OK", albo zgłosi niepowodzenie komunikatem "Set Fail".

5.2.3 Wyświetlacz

Poniżej przedstawiono układ ekranu wyświetlacza:

Wyświetlacz podzielony został w następujący sposób:

5.2.4 Obszar wyświetlania danych

Wiersz 1 – Informacja o stanie urządzenia

W tym miejscu wyświetlane są informacje o stanie urządzenia. "Czekajing Pac=0.0W" oznacza, że falownik jest w trybie gotowości do produkcji energii; "Checking**S Pac=0.0W" (czas sprawdzania zależy od poziomu bezpieczeństwa i różni się w zależności od kraju) oznacza, że falownik włączył system samokontroli oraz odliczanie i przygotowuje się do produkcji energii. Komunikat "Normal Pac=6000.0W" wskazuje, ze falownik generuje energię elektryczną. W przypadku wystąpienia niestandardowego działania instalacji na ekranie wyświetli się komunikat o błędzie.

Naciskając przycisk można wyświetlić na ekranie różne dane, np. parametry pracy lub status produkcji energii w danym obszarze. Menu składa się z menu głównego i podmenu. Menu główne przedstawione zostało na schemacie blokowym.

5.2.5 Korzystanie z wyświetlacza LCD

Wyświetlacz umożliwia dostęp do ustawień podstawowych parametrów. Za pomocą przycisków można ustawić język, godzinę i kraj. Menu pokazywane na wyświetlaczu LCD zorganizowane jest na dwóch poziomach. Krótkie lub długie naciśnięcie przycisku umożliwia przechodzenie pomiędzy poszczególnymi poziomami i pozycjami menu. Pozycje menu głównego, które nie mają swojego podmenu, są zablokowane. W przypadku tych pozycji, po naciśnięciu przycisku przez dwie sekundy na wyświetlaczu LCD pojawi się komunikat "Lock", a następnie wyświetlone zostaną dane dotyczące tej pozycji menu głównego. Zablokowane menu można odblokować tylko przy zmianie trybu pracy systemu, wystąpieniu błędu lub za pomocą przycisku.

5.2.6 Wprowadzenie do menu

· Kiedy instalacja fotowoltaiczna dostarcza energię do falownika, ekran LCD wyświetla menu główne.

 Ekran powitalny stanowi pierwszą pozycję w menu głównym, a interfejs wyświetla bieżący stan systemu. Po uruchomieniu pokazuje komunikat "Czekajing Pac=0.0W" a w trybie generowania energii wyświetla "Normal Pac=6000.0W". W przypadku wystąpienia błędu w systemie wyświetli się odpowiedni komunikat błędu.

Sposób wyświetlania napięcia i natężenia prądu w instalacji fotowoltaicznej oraz napięcia, natężenia prądu i częstotliwości sieci elektroenergetycznej:

- Nacisnąć krótko przycisk, aby przejść do pozycji menu "E-Today" i wyświetlić ilość energii wyprodukowanej na dzień dzisiejszy.
- Nacisnąć krótko przycisk, aby przejść do pozycji menu "E-Total" i wyświetlić całkowitą ilość wyprodukowanej energii do dnia dzisiejszego.
- Nacisnąć krótko przycisk, aby przejść do pozycji menu "Vpv" i wyświetlić napięcie w instalacji fotowoltaicznej w woltach (V).
- Nacisnąć krótko przycisk, aby przejść do pozycji menu "lpv" i wyświetlić natężenie prądu w instalacji fotowoltaicznej w amperach (A).
- Nacisnąć krótko przycisk, aby przejść do pozycji menu "Vac" i wyświetlić napięcie w sieci elektroenergetycznej w woltach (V).
- Nacisnąć krótko przycisk, aby przejść do pozycji menu "lav" i wyświetlić natężenie prądu w sieci elektroenergetycznej w amperach (A).
- Ponownie nacisnąć krótko przycisk, aby przejść do pozycji menu "Frequency" i wyświetlić częstotliwość sieci w hercach (Hz).
- Wyświetlanie komunikatów o błędach.

Ponownie nacisnąć krótko przycisk, aby przejść do pozycji menu historii komunikatów błędów "Error Message History".

Nacisnąć przycisk dłużej, aby przejść do podmenu wykrywania błędów. Po krótkim naciśnięciu przycisku w podmenu, wyświetlą się trzy najnowsze komunikaty o błędach pracy falownika. Dziennik pracy zawiera komunikaty o błędach i czasy ich wystąpienia (190520 15:30).

Sposób wyświetlania nazwy modelu i wybór kraju użytkowania:

W przypadku konieczności zmiany kraju użytkowania należy dłużej nacisnąć przycisk, aby przejść do podmenu.

W podmenu można zmienić kraj użytkowania naciskając krótko przycisk. Po dokonaniu zmiany kraju użytkowania wyświetlacz pokaże: "Setting...". 10 sekund później wyświetlacz pokaże: "Set Fail" lub "Set OK". W razie niewykonania żadnych czynności i nienaciśnięcia żadnego przycisku w podmenu, nastąpi wyłączenie podświetlenia wyświetlacza LCD i powrót do głównego menu.

Wyświetlanie wersji oprogramowania

Aby wyświetlić wersję oprogramowania, należy nacisnąć krótko przycisk pozycji nazwy modelu w menu głównym.

Aktualna wersja oprogramowania jest widoczna w tym menu.

5.2.7 Ustawienia podstawowe

• Ustawianie języka

Nacisnąć krótko przycisk, aby przejść do pozycji menu "Set Language". Nacisnąć przycisk i przytrzymać, aby przejść do podmenu. Nacisnąć krótko przycisk, aby przeglądać dostępne języki.

• Ustawienie czasu

W menu głównym nacisnąć krótko przycisk pozycji "Set Language", aby przejść do pozycji menu "Set Time".

Nacisnąć przycisk i przytrzymać, aby przejść do podmenu. Data i godzina początkowa to "2000-00-00 00:00", gdzie pierwsze cztery cyfry oznaczają rok (np. 2000 – 2099); piąta i szósta cyfra oznaczają miesiąc (np. 01 – 12), a siódma i ósma cyfra oznaczają dzień (np. 01 – 31). Pozostałe cyfry oznaczają godzinę z minutami.

Nacisnąć krótko przycisk, aby zmienić cyfrę w danej pozycji, a następnie nacisnąć przycisk dłużej, aby przesunąć kursor do następnej pozycji.

Ustawienie protokołu

Funkcja ta jest dostępna wyłącznie dla pracowników serwisu. Ustawienie niewłaściwego protokołu może doprowadzić do awarii komunikacji.

W menu głównym nacisnąć krótko przycisk pozycji "Set Time", aby przejść do wyświetlania protokołu. Naciskać przycisk przez 2 sekundy, aby przejść do podmenu. Podmenu obrotowe zawiera dwa protokoły. Należy wybrać protokół naciskając krótko odpowiedni przycisk. Falownik zapisze wybrany protokół. Jeśli przez 10 sekund użytkownik nie podejmie żadnego działania, wyświetlacz LCD automatycznie powróci do głównego menu, a podświetlenie zostanie wyłączone.

• Funkcja MPPT optymalizacji pracy w cieniu:

Domyślnie funkcja optymalizacji pracy w cieniu jest wyłączona.

Nie należy aktywować tej funkcji, jeśli panel nie znajduje się w cieniu. W przeciwnym razie może nastąpić zmniejszenie produkcji energii.

Nacisnąć przycisk, aby przejść do pozycji menu "Shadow Optimize". Jeżeli pojawi się komunikat "Shadow MPPT OFF", oznacza to, że funkcja optymalizacji pracy w cieniu jest włączona. Nacisnąć przycisk przez 2 sekundy, aby wyłączyć tę funkcję.

5.2.8 Ustawienie funkcji ograniczenia mocy

Poniżej pokazano działanie funkcji ograniczenia mocy "ON / OFF" (domyślne ustawienie jest na "OFF") oraz ustawienia ograniczenia mocy (domyślnie 2%).

Należy wprowadzić hasło, aby móc ustawić limit mocy. Domyślne hasło to "1111" (tylko w odniesieniu do australijskich przepisów bezpieczeństwa)

5.2.9 Działanie wyświetlacza podczas uruchamiania.

Kiedy wartość napięcia wejściowego osiągnie wartość napięcia rozruchowego falownika, wyświetlacz LCD uruchomi się. Zapali się żółta lampka, a na wyświetlaczu LCD pojawi się komunikat "Czekajing". Dalsze informacje zostaną wyświetlone w ciągu kilku sekund. Jeżeli falownik jest podłączony do sieci, wyświetli się komunikat "Checking XXs" i rozpocznie się odliczanie od 30 s. Kiedy odliczanie osiągnie wartość "00 s", będzie można usłyszeć 4 odgłosy aktywowania przekaźnika. Następnie na wyświetlaczu LCD pojawi się komunikat "Normal". Aktualna moc wyjściowa zostanie wyświetlona w lewym dolnym rogu wyświetlacza LCD.

5.3 Miękki i twardy reset Wi-Fi

Funkcje te są dostępne wyłącznie w falownikach wyposażonych w moduł Wi-Fi.

Funkcja twardego resetu Wi-Fi służy do przywracania wartości domyślnych. Po użyciu tej funkcji należy ponownie skonfigurować sieć Wi-Fi.

Nacisnąć krótko przycisk, aż na wyświetlaczu LCD pojawi się komunikat "WiFi Reset", a następnie nacisnąć przycisk dłużej, aż pojawi się komunikat "WiFi Resetting…". Zwolnić przycisk i poczekać, aż na ekranie pojawi się komunikat "WiFi Reset OK"

albo "Wi-Fi Reset Failed".

Naciskać przycisk, aż na wyświetlaczu LCD pojawi się komunikat "WiFi Reload", a następnie nacisnąć przycisk i przytrzymać, aż na wyświetlaczu LCD pojawi się komunikat "WiFi Reloading…". Zwolnić przycisk i poczekać, aż na ekranie pojawi się komunikat potwierdzający powodzenie: "WiFi Reloading OK" lub niepowodzenie operacji: "WiFi Reloading Failed".

5.4 Komunikaty o błędach

Komunikat o błędzie	Opis
Fac Fail	Częstotliwość sieci elektroenergetycznej poza dopuszczalnym zakresem.
Isolation Fail	Impedancja izolacji uziemienia jest zbyt niska.
Vac Fail	Napięcie w sieci poza dopuszczalnym zakresem.
PV Over Voltage	Przepięcie na wejściu DC.
Over Temperature	Zbyt wysoka temperatura obudowy.
Utility Loss	Sieć jest niedostępna.

W przypadku wystąpienia błędu, na wyświetlaczu LCD pojawi się odpowiedni komunikat o błędzie.

5.5 Środki ostrożności podczas pierwszego uruchomienia

- 1. Upewnić się, że instalacja AC jest podłączona, a wyłącznik AC jest w położeniu OFF.
- 2. Upewnić się, że przewód DC łączący falownik ze stringiem PV jest podłączony, a napięcie w instalacji fotowoltaicznej jest prawidłowe.
- 3. Włączyć prąd odłącznikiem DC i dokonać ustawień bezpieczeństwa zgodnie z lokalnymi przepisami.
- 4. Wyłącznik AC ustawić w położeniu ON. Sprawdzić, czy falownik działa prawidłowo.

5.6 Ustawienie funkcji specjalnych

Falownik posiada pole, w którym użytkownik może ustawić różne funkcje np. wartość wyzwalającą, czas wyzwalania, czas wznowienia połączenia oraz aktywne i nieaktywne krzywe QU i PU. Funkcje te można regulować przy użyciu specjalnego oprogramowania. W razie zainteresowania proszę skontaktować się z działem obsługi klienta. Instrukcje dotyczące oprogramowania są również dostępne na oficjalnej stronie internetowej. Dalsze informacje można też uzyskać kontaktując się z działem obsługi klienta.

5.7 Ustawienie funkcji specjalnych

Falownik posiada okno, w którym użytkownik może ustawić różne funkcje np. wartości wyzwalające, czasy wyzwalania, czasy kolejnego podłączenia oraz czynne i bierne krzywe QU i PU.nec. Zmiana ustawień jest możliwa za pomocą specjalnego oprogramowania. W celu uzyskania instrukcji obsługi oprogramowania można ją pobrać z oficjalnej strony internetowej lub skontaktować się z działem obsługi klienta. W razie potrzeby proszę skontaktować się z działem obsługi klienta.

5.7.1 Tryb krzywej mocy PF

Tryb krzywej mocy PF można modyfikować za pomocą protokołu komunikacyjnego Modbus, w szczególności z wykorzystaniem adresu Modbus urządzenia oraz wartości rejestru Modbus, a także zakresu ustawień pozwalającego na ustawienie odpowiedniej wartości.

Tryb krzywej mocy PF				
Funkcja	Wartość domyślna (Australia)	Wartość domyślna (Nowa Zelandia)	Zakres ustawień	Rejestr
Włączanie lub wyłączanie trybu krzywej PF	0	0	"0" lub "1"	40600
Współczynnik mocy B	50 (50%)	50 (50%)	30 – 80	40603
Współczynnik mocy C	90 (90%)	90 (90%)	90 – 100	40606

5.7.2 Tryb krzywej PU

Tryb krzywej PU można modyfikować za pomocą protokołu komunikacyjnego Modbus, w szczególności z wykorzystaniem adresu Modbus urządzenia oraz wartości rejestru Modbus, a także zakresu ustawień pozwalającego na ustawienie odpowiedniej wartości.

Tryb krzywej PU					
Funkcja	Wartość domyślna (Australia)	Wartość domyślna (Nowa Zelandia)	Zakres ustawień	Rejestr	
Włączanie lub wyłączanie trybu krzywej PU	1	1	"0" lub "1"	40680	
Współczynnik napięcia V1	900 (207 V)	900 (207 V)	0 – 2000	40683	
Współczynnik mocy P1	1000 (100%*Pn)	1000 (100%*Pn)	0 – 1500	40684	
Współczynnik napięcia V2	956 (220 V)	956 (220 V)	0 – 2000	40685	
Współczynnik mocy P2	1000 (100%*Pn)	1000 (100%*Pn)	0 – 1500	40686	
Współczynnik napięcia V3	1087 (250 V)	1061 (244 V)	0 – 2000	40688	
Współczynnik mocy P3	1000 (100%*Pn)	1000 (100%*Pn)	0 – 1500	40689	
Współczynnik napięcia V4	1152 (265 V)	1109 (255 V)	0 - 2000	40690	
Współczynnik mocy P4	200 (20%*Pn)	200 (20%*Pn)	0 – 1500	40691	

Przykład: po ustawieniu współczynnika napięcia V1 na 1100, przy napięciu znamionowym 230 V, V1 wyniesie 230 * 110% = 253 V.

Przykład: po ustawieniu współczynnika mocy P1 na 900 odpowiadająca moc wyniesie 0,9* mocy znamionowej.

5.7.3 Tryb krzywej QU

Tryb krzywej QU można modyfikować za pomocą protokołu komunikacyjnego Modbus, w szczególności z wykorzystaniem adresu Modbus urządzenia oraz wartości rejestru Modbus, a także zakresu ustawień pozwalającego na ustawienie odpowiedniej wartości.

Tryb krzywej QU					
Funkcja	Wartość domyślna (Australia)	Wartość domyślna (Nowa Zelandia)	Zakres ustawień	Rejestr	
Włączanie lub wyłączanie trybu krzywej QU	0	0	"0" lub "1"	40650	
Współczynnik napięcia V1	900 (207 V)	900 (207 V)	0 – 2000	40653	
Współczynnik mocy biernej Q1	300 (30%*Pn)	300 (30%*Pn)	0 - 600	40654	
Współczynnik napięcia V2	957 (220 V)	957 (220 V)	0 – 2000	40655	
Współczynnik mocy biernej Q2	300 (30%*Pn)	300 (30%*Pn)	0 – 1500	40656	
Współczynnik napięcia V3	1087 (250 V)	1061 (244 V)	0 – 2000	40657	
Współczynnik mocy biernej Q3	300 (30%*Pn)	300 (30%*Pn)	0 – 1500	40658	
Współczynnik napięcia V4	1152 (265 V)	1109 (255 V)	0 - 2000	40659	
Współczynnik mocy biernej Q4	300 (30%*Pn)	300 (30%*Pn)	0 - 600	40660	

Przykład: po ustawieniu współczynnika napięcia V1 na 1100, przy napięciu znamionowym 230 V, V1 wyniesie 230 * 110% = 253 V.

Przykład: po ustawieniu współczynnika mocy biernej Q1 na 300, odpowiadająca moc bierna Q1 wyniesie 30%* moc znamionowa.

5.7.4 Czas przywracania mocy

The power recovery rate can be modified by Modbus communication, specifically according to Czas przywracania mocy można modyfikować za pomocą protokołu komunikacyjnego Modbus, w szczególności z wykorzystaniem adresu Modbus urządzenia oraz wartości rejestru Modbus, a także zakresu ustawień pozwalającego na ustawienie odpowiedniej wartości.

	Funkcja	Wartość domyślna (Australia & Nowa Zelandia)	Zakres ustawień	Rejestr
Γ	Ustawienia czasu przywrócenia mocy	167 (16,7%Pn/min)	50 - 1000	40536

W razie potrzeby zmiany powyższych ustawień proszę skontaktować się z działem obsługi klienta.

6. Rozwiązywanie problemów

W większości przypadków falownik wymaga jedynie niewielu interwencji. Jeżeli jednak falownik nie działa prawidłowo, należy spróbować wykonać następujące czynności:

 Kiedy pojawi się jakiś problem, na przednim panelu zaświeci się czerwona dioda LED (sygnalizująca usterkę), a ekran LCD wyświetli typ awarii. Poniższa tabela zawiera wykaz komunikatów o błędach i rekomendowane w związku z nimi działania.

Typ błędu		Rozwiązywanie problemów		
	Isolation Failure	 Sprawdzić impedancję pomiędzy PV (+) i PV (-) a uziemieniem. Wartość impedancji musi być większa niż 100 kΩ. Upewnić się, czy falownik jest uziemiony. Jeżeli problem będzie się utrzymywał, należy skontaktować się z lokalnym serwisem. 		
	Ground I Failure	 Prąd w instalacji uziemiającej jest zbyt duży. Odłączyć wejścia paneli PV od generatora i sprawdzić instalację AC. Po usunięciu problemu podłączyć ponownie panel fotowoltaiczny i sprawdzić stan falownika. Jeżeli problem będzie się utrzymywał, należy skontaktować się z lokalnym serwisem. 		
Błąd	Vac Failure	 Jeżeli normalne działanie sieci zostanie przywrócone, w ciągu 5 minut falownik zrestartuje się samoczynnie. Upewnić się, czy napięcie sieciowe jest zgodne ze specyfikacją. Sprawdzić, czy przewód neutralny (N) i przewód ochronny (PE) są podłączone prawidłowo. Jeżeli problem będzie się utrzymywał, należy skontaktować się z lokalnym serwisem. 		
systemu	Fac Failure	1. Sieć nie jest podłączona. 2. Sprawdzić podłączenia do sieci. 3. Sprawdzić dostępność sieci.		
	Utility Loss	1. Brak połączenia z siecią. 2. Sprawdzić, czy sieć elektryczna jest podłączona do przewodu. 3. Sprawdzić dostęp do sieci elektrycznej.		
	PV Over Voltage	 Sprawdzić, czy napięcie otwartego obwodu PV przewyższa maksymalne napięcie wejściowe lub zbytnio do niego zbliżone. Jeżeli problem będzie się utrzymywał w sytuacji, gdy napięcie instalacji PV jest niższe od maksymalnego napięcia wejściowego, należy skontaktować się z lokalnym serwisem. 		
	Over Temperature	 Temperatura otoczenia jest wyższa niż dopuszczalna. Obniżyć temperaturę otoczenia. Przenieść falownik w chłodniejsze miejsce. Jeżeli problem się utrzymuje, należy skontaktować się z lokalnym serwisem w celu uzyskania pomocy. 		

Typ błędu		Rozwiązywanie problemów	
	Relay-Check Failure		
	DCI Injection High	1. Webservé odbeznik DC felownika	
Błąd falownika	EEPROM R/W Failure	 wyrączyc odrącznik DC ratownika. Poczekać, aż zgaśnie wyświetlacz LCD falownika. 	
	SPI Failure	3. Włączyć odłącznik UC i sprawdzić połączenie. 4. Jeżeli problem się utrzymuje, należy skontaktować się z lokalnym serwisem w celu	
	DC BUS High	uzyskania pomocy.	
	GFCI Failure		
Inne Wyświetlacz nie działa		 Odłącznik DC ustawić w położeniu OFF, wyjąć złączkę DC, a następnie zmierzyć napięcie w instalacji fotowoltaicznej. Wsunąć złączkę DC i przestawić odłącznik DC w położenie ON. Jeżeli napięcie w instalacji fotowoltaicznej jest niższe niż 250 V, należy sprawdzić ustawienia modułu falownika. Jeżeli napięcie jest wyższe niż 250 V, należy skontaktować się z lokalnym serwisem. 	

Uwaga:

W przypadku braku wystarczającej ilości światła słonecznego, falownik fotowoltaiczny może automatycznie na przemian włączać i wyłączać się na skutek zbyt małej ilości energii produkowanej przez panele fotowoltaiczne. Taka sytuacja nie prowadzi do uszkodzenia falownika. Jeżeli problem utrzymuje się, proszę się skontaktować z lokalnym serwisem.

7 Parametry techniczne

Dane techniczne	GW4K-DT	GW4KL-DT	GW5K-DT	GW5KL-DT	
Parametry wejściowe PV					
Maks. moc wejściowa DC (W)	6000	6000	7500	7500	
Maks. napięcie wejściowe DC (V) [1]	1000	600	1000	600	
Zakres napięć MPPT (V)	180 - 850	180 - 550	180 - 850	180 - 550	
Napięcie rozruchowe (V)	160	160	160	160	
Min. napięcie wejściowe (V)	210	210	210	210	
Nominalne napięcie wejściowe DC (V)	620	480	620	480	
Maks. prąd wejściowy (A)	12,5/12,5	12,5/12,5	12,5/12,5	12,5/12,5	
Maks. prąd zwarciowy (A)	15,6/15,6	15,6/15,6	15,6/15,6	15,6/15,6	
Liczba trackerów MPP	2	2	2	2	
Liczba stringów wejściowych na tracker MPP	1/1	1/1	1/1	1/1	
Parametry wyjściowe AC					
Nominalna moc wyjściowa (W)	4000	4000	5000	5000	
Maks. pozorna moc wyjściowa (VA) [1]	4400	4400	5500	5500	
Nominalne napięcie wyjściowe (V)	400, 3L/N/PE	400, 3L/N/PE;	400, 3L/N/PE	400, 3L/N/PE	
Nominalna częstotliwość wyjściowa (Hz)	50/60	50/60	50/60	50/60	
Maks. prąd wyjściowy (A)	6,4	6,4	8	8	
Współczynnik mocy wyjściowej	– 1 (regulowany od 0,8 wartości pojemnościowej do 0,8 wartości indukcyjnej)			ci indukcyjnej)	
Współczynnik zniekształceń harmonicznych (THDi, w porówn. z wart. nom.)	<3%	<3%	<3%	<3%	
Wydajność					
Wydajność maksymalna	98,2%	98,0%	98,2%	98,0%	
Wydajność w Europie	97,6%	97,5%	97,6%	97,5%	
Ochrona					
Zabezpieczenie od pracy wyspowej		Zinteg	rowane		
Zabezpieczenie przed odwrotną polaryzacją		Zinteg	rowane		
Wykrywanie rezystancji izolacji		Zinteg	rowane		
Zabezpieczenie przeciwprzepięciowe DC		Zintegrow	ane (Typ III)		
Zabezpieczenie przeciwprzepięciowe AC		Zintegrow	ane (Typ III)		
Moduł monitorowania prądu różnicowego (RCMU)		Zinteg	rowane		
Zabezpieczenie nadprądowe na wyjściu		Zinteg	rowane		
Zabezpieczenie zwarciowe na wyjściu		Zinteg	rowane		
Zabezpieczenie przeciwprzepięciowe na wyjściu		Zinteg	rowane		
Dane ogólne					
Zakres temperatury roboczej (°C)		-30	- 60		
Wilgotność względna		0 -	100%		
Wysokość pracy (m)		≤4	.000		
Chłodzenie		Naturalne	chłodzenie		
Wyświetlacz	LED lub LCD				
Komunikacja	WiFi lub LAN lub RS485				
Waga (kg)	15				
Wymiary (szerokość × wysokość × głębokość mm)	354*433*147				
Poziom ochrony IP	IP65				
Pobor energii w nocy (W)	<1				
	Bez transformatora				
Certyfikaty i standardy					
Standardy sieci					
Przepisy bezpieczenstwa	W celu uzyskania szczegółowych informacji proszę odwiedzić stronę internetową.				
EMC					

[1] W przypadku Belgii: maks. pozorna moc wyjściowa (VA), GW4K-DT wynosi 4000; GW5K-DT wynosi 5000;

Dane techniczne	GW6K-DT	GW6KL-DT	GW8K-DT	GW10KT-DT	
Parametry wejściowe PV					
Maks. moc wejściowa DC (W)	9000	9000	12 000	15 000	
Maks. napięcie wejściowe DC (V) [1]	1000	600	1000	1000	
Zakres napięć MPPT (V)	180 - 850	180 - 550	180 - 850	180 - 850	
Napięcie rozruchowe (V)	160	160	160	160	
Min. napięcie wejściowe (V)	210	210	210	210	
Nominalne napięcie wejściowe DC (V)	620	480	620	620	
Maks. prąd wejściowy (A)	12,5/12,5	12,5/12,5	12,5/12,5	12,5/12,5	
Maks. prąd zwarciowy (A)	15,6/15,6	15,6/15,6	15,6/15,6	15,6/15,6	
Liczba trackerów MPP	2	2	2	2	
Liczba stringów wejściowych na tracker MPP	1/1	1/1	1/1	1/1	
Parametry wyjściowe AC					
Nominalna moc wyjściowa (W)	6000	6000	8000	10 000	
Maks. pozorna moc wyjściowa (VA) [1]	6600	6600	8800	11 000	
Nominalne napięcie wyjściowe (V)	400, 3L/N/PE	400, 3L/N/PE	400, 3L/N/PE;	400, 3L/N/PE	
Nominalna częstotliwość wyjściowa (Hz)	50/60	50/60	50/60	50/60	
Maks. prąd wyjściowy (A)	9,6	9,6	12,8	16	
Współczynnik mocy wyjściowej	– 1 (regulowa	iny od 0,8 wartości pojen	nnościowej do 0,8 wartoś	ci indukcyjnej)	
Współczynnik zniekształceń harmonicznych (THDi, w porówn. z wart. nom.)	<3%	<3%	<3%	<3%	
Wydajność					
Wydajność maksymalna	98,2%	98,0%	98,2%	98,3%	
Wydajność w Europie	97,6%	97,5%	97,6%	97,7%	
Ochrona					
Zabezpieczenie od pracy wyspowej	Zintegrowane				
Zabezpieczenie przed odwrotną polaryzacją	Zintegrowane				
Wykrywanie rezystancji izolacji		Zinteg	rowane		
Zabezpieczenie przeciwprzepięciowe DC	Zintegrowane (Typ III)				
Zabezpieczenie przeciwprzepięciowe AC	Zintegrowane (Typ III)				
Moduł monitorowania prądu różnicowego (RCMU)	Zintegrowane				
Zabezpieczenie nadprądowe na wyjściu	Zintegrowane				
Zabezpieczenie zwarciowe na wyjściu		Zinteg	rowane		
Zabezpieczenie przeciwprzepięciowe na wyjściu		Zinteg	rowane		
Dane ogólne					
Zakres temperatury roboczej (°C)		-30	- 60		
Wilgotność względna		0 -	100%		
Wysokość pracy (m)		≤4	1000		
Chłodzenie	Naturalne	chłodzenie	Chłodzenie v	ventylatorem	
Wyświetlacz		LCD	&LED		
Komunikacja	WiFi lub LAN lub RS485				
Waga (kg)	15 16				
Wymiary (szerokość × wysokość × głębokość mm)	354*433*147 354*433*155				
Poziom ochrony IP	IP65				
Pobór energii w nocy (W)			<1		
Topologia	Bez transformatora				
Certyfikaty i standardy					
Standardy sieci					
Przepisy bezpieczeństwa	W celu uzyskania szczegółowych informacji proszę odwiedzić stronę internetową.				
EMC					

[1] W przypadku Belgii: maks. pozorna moc wyjściowa (VA), GW6K-DT wynosi 6000; GW8K-DT wynosi 8000; GW10KT-DT wynosi 10 000;

Dane techniczne	GW12KT-DT	GW15KT-DT			
Parametry wejściowe PV					
Maks. moc wejściowa DC (W)	18 000	22 500			
Maks. napięcie wejściowe DC (V) [1]	1000	1000			
Zakres napięć MPPT (V)	180 - 850	180 - 850			
Napięcie rozruchowe (V)	160	160			
Min. napięcie wejściowe (V)	210	210			
Nominalne napięcie wejściowe DC (V)	620	620			
Maks. prąd wejściowy (A)	12,5/25	12,5/25			
Maks. prąd zwarciowy (A)	15,6/31,2	15,6/31,2			
Liczba trackerów MPP	2	2			
Liczba stringów wejściowych na tracker MPP	1/2	1/2			
Parametry wyjściowe AC					
Nominalna moc wyjściowa (W)	12 000	15 000			
Maks. pozorna moc wyjściowa (VA)	14 000	16 500			
Nominalne napięcie wyjściowe (V)	400, 3L/N/PE	400, 3L/N/PE			
Nominalna częstotliwość wyjściowa (Hz)	50/60	50/60			
Maks. prąd wyjściowy (A)	20,3	24			
Współczynnik mocy wyjściowej	– 1 (regulowany od 0,8 wartości pojem	nościowej do 0,8 wartości indukcyjnej)			
Współczynnik zniekształceń harmonicznych (THDi, w porówn. z wart. nom.)	<3%	<3%			
Wydajność					
Wydajność maksymalna	98,3%	98,3%			
Wydajność w Europie	97,7%	97,7%			
Ochrona					
Zabezpieczenie od pracy wyspowej	Zintegrowane				
Zabezpieczenie przed odwrotną polaryzacją	Zintegi	rowane			
Wykrywanie rezystancji izolacji	Zintegrowane				
Zabezpieczenie przeciwprzepięciowe DC	Zintegrowane (Typ III)				
Zabezpieczenie przeciwprzepięciowe AC	Zintegrowane (Typ III)				
Moduł monitorowania prądu różnicowego (RCMU)	Zintegi	owane			
Zabezpieczenie nadprądowe na wyjściu	Zinteg	owane			
Zabezpieczenie zwarciowe na wyjściu	Zintegi	owane			
Zabezpieczenie przeciwprzepięciowe na wyjściu	Zintegi	owane			
Dane ogólne					
Zakres temperatury roboczej (°C)	-30	- 60			
Wilgotność względna	0 - 1	00%			
Wysokość pracy (m)	≤41	000			
Chłodzenie	Chłodzenie v	ventylatorem			
Wyświetlacz	LCD	&LED			
Komunikacja	WiFi lub LAN lub RS485				
Waga (kg)	18				
Wymiary (szerokość × wysokość × głębokość mm)	354*433*155				
Poziom ochrony IP	IP65				
Pobór energii w nocy (W)	<1				
Topologia	Bez transformatora				
Certyfikaty i standardy					
Standardy sieci					
Przepisy bezpieczeństwa	W celu uzyskania szczegółowych informacji proszę odwiedzić stronę internetową.				
EMC					

[1] W przypadku Belgii: maks. pozorna moc wyjściowa (VA), GW12KT-DT wynosi 12 000; GW15KT-DT wynosi 15 000;

Dane techniczne	GW17KT-DT	GW20KT-DT	GW25KT-DT
Parametry wejściowe PV			
Maks. moc wejściowa DC (W)	25 500	30 000	37 500
Maks. napięcie wejściowe (V)	1100	1100	1100
Zakres napięć MPPT (V)	200 - 950	200 - 950	
Napięcie rozruchowe (V)	180	180	180
Min. napięcie wejściowe (V)	210	210	210
Nominalne napięcie wejściowe DC (V)	620	620	620
Maks. prąd wejściowy (A)	25/25	25/25	37,5/25
Maks. prąd zwarciowy (A)	31,2/31,2	31,2/31,2	46,8/31,2
Liczba trackerów MPP	2	2	2
Liczba stringów wejściowych na tracker MPP	2/2	2/2	3/2
Parametry wyjściowe AC			
Nominalna moc wyjściowa (W)	17 000	20 000	25 000
Maks. pozorna moc wyjściowa (VA)	19 000	22 000	27 500
Nominalne napięcie wyjściowe (V)	400, 3L/N/PE	400, 3L/N/PE;	400, 3L/N/PE
Nominalna częstotliwość wyjściowa (Hz)	50/60	50/60	50/60
Maks. prąd wyjściowy (A)	28,8	31,9	40,8
Współczynnik mocy wyjściowej	– 1 (regulowany od 0,8	3 wartości pojemnościowej do 0,8	, 3 wartości indukcyjnej)
Współczynnik zniekształceń harmonicznych (THDi, w porówn. z wart. nom.)	<3%	<3%	<3%
Wydajność			
Wydajność maksymalna	98,40%	98,40%	98,40%
Wydajność w Europie	>97,7%	>97,7%	>97,7%
Ochrona			
Zabezpieczenie od pracy wyspowej		Zintegrowane	
Zabezpieczenie przed odwrotną polaryzacją	Zintegrowane		
Wykrywanie rezystancji izolacji		Zintegrowane	
Zabezpieczenie przeciwprzepięciowe DC	Typ III (Typ II opcjonalny)		
Zabezpieczenie przeciwprzepięciowe AC	Тур III		
Moduł monitorowania prądu różnicowego (RCMU)	Zintegrowane		
Zabezpieczenie nadprądowe na wyjściu	Zintegrowane		
Zabezpieczenie zwarciowe na wyjściu		Zintegrowane	
Zabezpieczenie przeciwprzepięciowe na wyjściu		Zintegrowane	
Dane ogólne			
Zakres temperatury roboczej (°C)		-30 - 60	
Wilgotność względna		0-100%	
Wysokość pracy (m)		≤4000	
Chłodzenie		Chłodzenie wentylatorem	
Wyświetlacz		LCD & LED	
Komunikacja	Wi-Fi lub LAN lub RS485 (Opcjonalnie)		
Waga (kg)	25		
Wymiary (szerokość × wysokość × głębokość mm)	415*511*175		
Poziom ochrony IP		IP65	
Pobór energii w nocy (W)		<1	
Topologia		Bez transformatora	
Certyfikaty i standardy			
Standardy sieci			
Przepisy bezpieczeństwa	W celu uzyskania szczegółowych informacji proszę odwiedzić stronę internetową		

[1] W przypadku Belgii: maks. pozorna moc wyjściowa (VA), GW17K-DT wynosi 17 000; GW20K-DT wynosi 20 000; GW25KT-DT wynosi 25 000;

Dane techniczne	GW8KAU-DT	GW10KAU-DT	GW12KAU-DT		
Parametry wejściowe PV					
Maks. moc wejściowa DC (W)	10 640	13 300	15 960		
Maks. napięcie wejściowe (V)	1100	1100	1100		
Zakres napięć MPPT (V)	200 – 950	200 - 950	200 – 950		
Napięcie rozruchowe (V)	180	180	180		
Maks. prąd wejściowy (A)	25/25	25/25	25/25		
Maks. prąd zwarciowy (A)	31,2/31,2	31,2/31,2	31,2/31,2		
Liczba trackerów MPP	2	2	2		
Liczba stringów wejściowych na tracker MPP	2/2	2/2	2/2		
Parametry wyjściowe AC					
Nominalna moc wyjściowa (W)	8000	10 000	12 000		
Maks. pozorna moc wyjściowa (VA)	8800	11 000	13 200		
Nominalne napięcie wyjściowe (V)	400, 3L/N/PE	400, 3L/N/PE	400, 3L/N/PE		
Nominalna częstotliwość wyjściowa (Hz)	50/60	50/60	50/60		
Maks. prąd wyjściowy (A)	12,8	16	19,2		
Współczynnik mocy wyjściowej	– 1 (regulowany od 0	8 wartości pojemnościowej do 0	,8 wartości indukcyjnej)		
Współczynnik zniekształceń harmonicznych (THDi, w porówn. z wart. nom.)	<3%	<3%	<3%		
Wydajność					
Wydajność maksymalna	98,4%	98,4%	98,4%		
Wydajność w Europie	97,5%	97,5%	97,5%		
Ochrona					
Zabezpieczenie od pracy wyspowej	Zintegrowane				
Zabezpieczenie przed odwrotną polaryzacją		Zintegrowane			
Wykrywanie rezystancji izolacji		Zintegrowane			
Ochrona przeciwprzepięciowa DC		Тур II			
Ochrona przeciwprzepięciowa AC		Тур II			
Moduł monitorowania prądu różnicowego (RCMU)		Zintegrowane			
Zabezpieczenie nadprądowe na wyjściu		Zintegrowane			
Zabezpieczenie zwarciowe na wyjściu	Zintegrowane				
Zabezpieczenie przeciwprzepięciowe na wyjściu		Zintegrowane			
Moduł przerywacza łuku elektrycznego (AFCI)		Opcjonalny			
Dane ogólne					
Zakres temperatury roboczej (°C)		-30 - 60			
Wilgotność względna		0 - 100%			
Wysokość pracy (m)	≤4000				
Chłodzenie	Chłodzenie wentylatorem				
Wyswietlacz					
Komunikacja	KS485; WiFi lub LAN (opcjonalnie)				
Waga (kg)	25				
wymiary (szerokosc × wysokosc × głębokosc mm)	415*511*175				
Poziom ochrony IP		د0۲۱			
Topologia		< Roz transformatora			
	Bez transformatora				
Certynkaty I standardy					
Przepisy bezpieczeństwa					
	w celu uzyskania szczej	yołowych miornacji proszę odwi	ieuzie stronę internetową		
LIVIC					

Dane techniczne	GW15KAU-DT	GW17KAU-DT	GW20KAU-DT
Parametry wejściowe PV			
Maks. moc wejściowa DC (W)	19 950	22 610	26 600
Maks. napięcie wejściowe (V)	1100	1100	1100
Zakres napięć MPPT (V)	200 – 950	200 – 950	200 - 950
Napięcie rozruchowe (V)	180	180	180
Maks. prąd wejściowy (A)	25/25	25/25	25/25
Maks. prąd zwarciowy (A)	31,2/31,2	31,2/31,2	31,2/31,2
Liczba trackerów MPP	2	2	2
Liczba stringów wejściowych na tracker MPP	2/2	2/2	2/2
Parametry wyjściowe AC			
Nominalna moc wyjściowa (W)	15 000	17 000	20 000
Maks. pozorna moc wyjściowa (VA)	16 500	19 000	22 000
Nominalne napięcie wyjściowe (V)	400, 3L/N/PE	400, 3L/N/PE	400, 3L/N/PE
Nominalna częstotliwość wyjściowa (Hz)	50/60	50/60	50/60
Maks. prąd wyjściowy (A)	24	28,8	31,9
Współczynnik mocy wyjściowej	– 1 (regulowany od 0,	* 8 wartości pojemnościowej do 0,	8 wartości indukcyjnej)
Współczynnik zniekształceń harmonicznych (THDi, w porówn. z wart. nom.)	<3%	<3%	<3%
Wydajność			
Wydajność maksymalna	98,4%	98,4%	98,4%
Wydajność w Europie	97,5%	97,5%	97,5%
Ochrona	·		
Zabezpieczenie od pracy wyspowej	Zintegrowane		
Zabezpieczenie przed odwrotna polarvzacia	Zintegrowane		
Wykrywanie rezystancji izolacji	Zintegrowane		
Ochrona przeciwprzepięciowa DC	Тур II		
Ochrona przeciwprzepieciowa AC	Тур ІІ		
Moduł monitorowania pradu różnicowego (RCMU)	Zintegrowane		
Zabezpieczenie nadprądowe na wyjściu	Zintegrowane		
Zabezpieczenie zwarciowe na wyiściu	Zintegrowane		
Zabezpieczenie przeciwprzepieciowe na wviściu	Zintegrowane		
Moduł przerywacza łuku elektrycznego (AFCI)		Opcionalny	
Dane ogólne			
Zakres temperatury roboczei (°C)		-30 - 60	
Wilgotność względna		0 - 100%	
Wysokość pracy (m)		≤4000	
Chłodzenie		Chłodzenie wentylatorem	
Wyświetlacz		LCD&LED	
Komunikacia	RS485: WiEi Jub J AN (opcionalnie)		
Waga (kg)			
Wymiary (szerokość × wysokość × głebokość mm)		415*511*175	
Poziom ochrony IP	415°511^1/5		
Pobór energii w nocy (W)		<1	
	<1 Restractoretor		
Topologia		Bez transformatora	
Topologia		Bez transformatora	
Topologia Certyfikaty i standardy Standardysieci		Bez transformatora	
Topologia Certyfikaty i standardy Standardy sieci Przenisy bezpieczeństwa	W celu uzvskania szczec	Bez transformatora	edzić strone internetowa

.

Uwaga:

Definicja kategorii zabezpieczeń przeciwprzepięciowych

- Kategoria I: dotyczy urządzeń podłączonych do obwodu wyposażonego w zabezpieczenia redukujące przepięcia chwilowe.
- Kategoria II: dotyczy urządzeń niepodłączonych na stałe do instalacji. Obejmuje przykładowo urządzenia, narzędzia przenośne i inny sprzęt podłączany do gniazda elektrycznego;
- Kategoria III: dotyczy urządzeń elektrycznych podłączonych na stałe po stronie odbiorów, włączając rozdzielnicę główną. Obejmuje m.in. aparaturę rozdzielczą i inne urządzenia w instalacjach przemysłowych;
- Kategoria IV: dotyczy urządzeń podłączonych na stałe po stronie zasilania (przed rozdzielnicą główną). Obejmuje m.in. liczniki energii elektrycznej, podstawowe zabezpieczenia nadprądowe oraz inny sprzęt podłączony bezpośrednio do sieci zewnętrznych.

Definicja kategorii wilgotności

Parametry wilgotności	Poziom			
	3K3	4K2	4K4H	
Zakres temperatury	0-+40°C	-33 - +40°C	-20 − +55°C	
Zakres wilgotności	5% – 85%	15% - 100%	4% - 100%	

Definicja kategorii otoczenia

- Na zewnątrz: temperatura otoczenia w zakresie od -20 do 50°C. Wilgotność względna w zakresie od 4% do 100%, w odniesieniu do PD3.
- W pomieszczeniach nieklimatyzowanych: temperatura otoczenia w zakresie od -20 do 50°C. Wilgotność względna w zakresie od 5% do 95%, w odniesieniu do PD3.
- W pomieszczeniach klimatyzowanych: temperatura otoczenia w zakresie 0 40°C. Wilgotność względna w zakresie od 5% do 85%, w odniesieniu do PD2.

Definicja stopni zanieczyszczenia

- 1. stopień zanieczyszczenia: Brak zanieczyszczeń lub występują tylko suche zanieczyszczenia nieprzewodzące prądu. Zanieczyszczenia niemające wpływu na pracę urządzeń.
- 2. stopień zanieczyszczenia: Zwykle występują zanieczyszczenia nieprzewodzące prądu. Spodziewać się jednak należy zanieczyszczeń przewodzących prąd w wyniku kondensacji pary wodnej.
- stopień zanieczyszczenia: Występują zanieczyszczenia przewodzące prąd. Występują również zanieczyszczenia suche, które mogą przewodzić prąd na skutek spodziewanej kondensacji pary wodnej.
- 4. stopień zanieczyszczenia: Występują trwałe zanieczyszczenia przewodzące prąd. Na przykład zanieczyszczenia przewodzące w postaci pyłu, deszczu i śniegu.